
A Generalized Step-Up-Down Multiple Test Procedure
Author(s): Ajit C. Tamhane, Wei Liu, Charles W. Dunnett
Source: The Canadian Journal of Statistics / La Revue Canadienne de Statistique, Vol. 26, No. 2
(Jun., 1998), pp. 353-363
Published by: Statistical Society of Canada
Stable URL: http://www.jstor.org/stable/3315516
Accessed: 22/10/2010 10:22

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ssc.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Statistical Society of Canada is collaborating with JSTOR to digitize, preserve and extend access to The
Canadian Journal of Statistics / La Revue Canadienne de Statistique.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=ssc
http://www.jstor.org/stable/3315516?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ssc


The Canadian Journal of Statistics 353 
Vol. 26, No. 2, 1998, Pages 353-363 
La Revue Canadienne de Statistique 

A generalized step-up-down 
multiple test procedure 
Ajit C. TAMHANE, Wei LIU and Charles W. DUNNETT* 

Northwestern University, University of Southampton and McMaster University 

Key words and phrases: Biometric applications, multiple comparisons, stepwise test 

procedures, familywise error rate, power. 
AMS 1991 subject classifications: 62F03, 92C50. 

ABSTRACT 

A generalization of step-up and step-down multiple test procedures is proposed. This step-up- 
down procedure is useful when the objective is to reject a specified minimum number, q, out of a 
family of k hypotheses. If this basic objective is met at the first step, then it proceeds in a step-down 
manner to see if more than q hypotheses can be rejected. Otherwise it proceeds in a step-up manner 
to see if some number less than q hypotheses can be rejected. The usual step-down procedure is 
the special case where q = 1, and the usual step-up procedure is the special case where q = k. 
Analytical and numerical comparisons between the powers of the step-up-down procedures with 
different choices of q are made to see how these powers depend on the actual number of false 
hypotheses. Examples of application include comparing the efficacy of a treatment to a control for 
multiple endpoints and testing the sensitivity of a clinical trial for comparing the efficacy of a new 
treatment with a set of standard treatments. 

RESUME 

Une gen6ralisation des procedures de test multiples step-up et step-down est propos6e. Cette 
procedure step-up-down est utile lorsque l'objectif est de rejeter un nombre minimum sp6cifi6 
q d'une famille de k hypotheses. Si l'objectif de base est atteint 'a la premiere etape, alors elle 
proc'de dans une maniere descendante pour voir si plus que q hypotheses peuvent &re rejet6es. 
Sinon, elle procede d'une maniere ascendante pour voir si un nombre inf6rieur h q d'hypotheses 
peut 8tre rejet6. La proc6dure step-down habituelle est le cas sp6cial oji q = 1, et la proc6dure 
step-up habituelle est le cas sp6cial oui q = k. Des comparaisons analytiques et num6riques entre les 
puissances des procedures step-up-down avec diff6rents choix de q sont propos6es afin de montrer 
comment ces puissances dependent de nombre d'hypotheses fausses. Des exemples d'application 
incluent la comparaison de l'efficacit6 d'un traitement afin de contr6ler les point finaux multiples et 
de tester la sensibilit6 d'un essai clinique comparant l'efficacit6 l'efficacit6 d'un nouveau traitement 
avec un ensemble de traitements standard. 

1. INTRODUCTION 

In this paper, we consider the problem of simultaneously testing a family of k > 2 
hypotheses, MfI,M12, 

....'k, 
based on test statistics t1, t2 ... tk, respectively. The fami- 

lywise error rate is defined as the probability of rejecting at least one true !1i. We require 
that any multiple test procedure for this problem control the familywise error rate at 
a designated level ct, irrespective of which and how many of the 

J1, 
are true. A mul- 

tiple test procedure satisfying this condition will be referred to as an a-level multiple 
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test procedure. See Hochberg and Tamhane (1987) for a rationale behind control of the 

familywise error rate and for a general introduction to multiple comparison problems. 
There are two types of multiple test procedures: single-step and stepwise. In a single- 

step procedure the decision on any H-i does not depend upon the decision on any other 

.1-j; therefore the hypotheses can be tested without reference to one another. A single- 
step testing procedure typically arises when a simultaneous confidence-interval procedure 
is used to make the hypothesis tests. On the other hand, in a stepwise procedure the 
hypotheses are tested step by step in some order. In the present paper, this order is 
determined by the ordered values of the test statistics, t(l) < t(2) < - - - < t(k), where a 
larger value of a test statistic is assumed to be more significant. The decisions on the 
earlier hypotheses in the order tested affect the decisions on the hypotheses tested later. 

Stepwise procedures are more powerful than single-step procedures when the detection 
of more than one false hypothesis is of interest. 

There are two types of stepwise procedures: step-down and step-up. To explain these 
procedures, we introduce the notation H1(i) for the hypothesis associated with the ith 
ordered test statistic, t(i). In a step-down procedure testing begins with 1I(k), i.e., the 

hypothesis associated with the most significant test statistic, t(k) = tmax. If H(k) is 
rejected, testing continues in the order !(k-1),!4(k-2) ... as long as rejection occurs 
at each step. Testing stops either when there are no more hypotheses to test or when 
a hypothesis is not rejected ("accepted"), at which point the remaining hypotheses are 

accepted by implication without actually testing them. In a step-up procedure testing 
begins with H(1), i.e., the hypothesis associated with the least significant test statistic, 
t(l) = tmin. If -H(1) is accepted, testing continues in the order H(2),H(3), ... , as long as 

acceptance occurs at each step. Testing stops either when there are no more hypotheses 
to test or when a hypothesis is rejected, at which point the remaining hypotheses are 

rejected by implication without actually testing them. 
The test in the first step of a step-down procedure answers the question "Can at least 

one hypothesis be rejected?" by using a test based on tmax. If the answer to this question 
is affirmative, then the procedure proceeds testing in a step-down manner to provide a 
further resolution of this question. The test in the first step of a step-up procedure answers 
the question "Can all hypotheses be rejected?" by using a test based on tmin [the "min" 
test of Laska and Meisner (1989)]. If the answer to this question is negative, then the 

procedure proceeds testing in a step-up manner to provide a further resolution of this 
question. 

In some applications the investigator wants to answer the question "Can at least q 
hypotheses be rejected?" where q is a specified integer between 1 and k. For example, a 
new treatment may be preferred to a placebo if it shows efficacy on at least q out of k 

endpoints; another example is given in Section 6. A test to answer this question can be 
based on the statistic t(r) where r = k - q + 1 (reject H(r), H(r+l,,...,H(k) if t(r) > Cr). A 

stepwise extension of this test proceeds in a step-down or step-up manner depending on 
whether the answer to the question is affirmative or not. We call the resulting stepwise 
procedure a step-up-down procedure and denote it by SUDP(r). The step-down and step-up 
procedures are special cases of SUDP(r) for q = 1, r k and q = k, r 1, respectively. 

The purpose of the present paper is to develop this generalized procedure in the context 
of the normal-theory linear model for a balanced design. A study of the power properties 
of this procedure shows that if m is the actual number of true hypotheses and q = k -m is 
the actual number of false hypotheses, then the most powerful SUDP(r) is obtained when 
r m + 1 k - q + 1. Thus another application of SUDP(r) is when one has some prior 
idea about the likely number of true/false hypotheses. 
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The plan of the paper is as follows. Section 2 gives the distributional setup for balanced 

designs. For this setup the estimates of the test parameters have equal variances and 

equal correlation coefficients, which simplifies the calculation of the critical constants 
of SUDP(r). Section 3 states the procedure. Section 4 shows how to obtain its critical 
constants. A table of selected constants is provided. Section 5 gives results, both analytical 
and numerical, on the power properties of SUDP(r). Section 6 discusses an application 
dealing with demonstrating the sensitivity of a clinical trial for a new generic drug. 
Finally, Section 7 gives concluding remarks. 

2. PRELIMINARIES 

Consider the following one-sided multiple hypotheses testing problem on k unknown 

parameters, 01,02,... *8Ok: 

Hi : i = 0 vs. Ai:Oi > 0 (1 < i < k). (2.1) 

We assume the standard-normal-theory setup where the Oi are estimable linear parametric 
functions (typically contrasts among the treatment means). Let 01, 

2,..... 
8k be their least- 

squares estimates. Suppose that the design is balanced in the sense that the Oi have equal 
variances and equal correlation coefficients. Specifically, we assume that the O• have a 

joint k-variate normal distribution with 

E i = 0i, '/ar 0i =- 202 and Corr (0i, j) 
= p for all i j; (2.2) 

here t2 and p are known design-dependent constants, and 02 is an unknown experimental 
error variance. Let s2 be an estimate of 02 based on v degrees of freedom (d.f.), so that 
the corresponding random variable (r.v.) S2 is distributed as o22/v independently of 
the 0i. 

Three examples of this setup are: (1) comparisons of treatments with a control in 
a one-way layout (Dunnett 1955, 1997) with an equal number, n, of observations on 
each treatment and possibly a different number, no, of observations on the control; (2) 
orthogonal contrasts among the cell means corresponding to main effects and interactions 
in a two-level factorial experiment with equireplicated cells; and (3) a BTIB design 
(Bechhofer and Tamhane 1981) for comparing treatments with a control using incomplete 
blocks. 

The test statistics used to test the H-i are 

oi _i i 
ti ( < i < k). (2.3) 

SE( i) ST 

The r.v.'s Ti corresponding to the observed statistics ti have a k-variate t-distribution with 
common correlation p and d.f. v; the subset of the Ti corresponding to the true HMi has 
a central t-distribution, and the complementary subset has a noncentral t-distribution. 
Denote by t,(a, the upper a equicoordinate critical point of a central k-variate t- 
distribution with common correlation p and d.f. v. These critical points will be needed in 
(4.2) below. Comprehensive tables of tl), are given in Bechhofer and Dunnett (1988), 
or they can be computed using the algorithm of Dunnett (1989). 

3. A GENERALIZED STEP-UP-DOWN PROCEDURE 

For fixed integer r (1 < r < k), the step-up-down procedure SUDP(r) begins by 
testing the hypothesis I(,r) that corresponds to the rth test statistic in ascending order of 
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significance. IfH(,), is rejected, then H(,r1),...,H(k) are also rejected and testing continues 

by testing H(,1r1), (r-2),..., 
in the usual step-down manner until a hypothesis is accepted. 

If H(,) is accepted, then 
H(1),...,H(,-1) 

are also accepted and testing continues by testing 

H(r+,)1,H(r+2) 
.... 

, in the usual step-up manner until a hypothesis is rejected. 
The steps in SUDP(r) are as follows: 

Step 0. Order the test statistics ti: t(l) < t(2) < 
... 

< t(k). Let H(3),Y-(2) . 
....(k) 

be 
the corresponding hypotheses. Choose critical constants cl 

_< 
c2 _< 

? < ck as indicated 
in (4.2) below. 

Step 1(a). If t(r) < Cr then accept 1H(),H(2), ... ,H(r) and go to general step (a). 
Step 1(b). If t(r) > Cr then reject H(r),,H(r+,,...,)-H(k) and go to general step (b). 
General step (a). Let H(i) denote the last accepted hypothesis [at Step l(a), i 

r]. If i - k then stop testing; otherwise test H(i+1). If t(i+l) > ci+1 then reject 

H(i+1),Hi(i+2), 
.... 

9H(k) and stop testing. If t(i+l) < ci+1 then accept H(;+1). Set i to i + 1 
and return to the beginning of this step. 

General step (b). Let H(i) denote the last rejected hypothesis [at step l(b), i = r]. 
If i = 1 then stop testing; otherwise test 

1(i--1). 
If t(i-1) < ci-1 then accept 

H(i-1),H(i-2),... ,H(1) and stop testing. If t(i-1) > ci-1 then reject H(i-1). Set i to i - 1 
and return to the beginning of this step. 

For r = 1, SUDP(r) reduces to the step-up procedure of Dunnett and Tamhane (1992a), 
while for r = k, SUDP(r) reduces to the step-down procedure given variously by Miller 
(1966), Naik (1975), Marcus et al. (1976) and Dunnett and Tamhane (1991). 

4. DETERMINATION OF CRITICAL CONSTANTS 

We determine the critical constants of SUDP(r) SO that the requirement that the family- 
wise error rate be < a is met. Let ,, be any parameter configuration 0 = (01,... Ok) 
such that 0i - 0 for i = I...,m and Oi > 0 for i m + 1,...,k; thus H1,...,Hm are 
true and 

Hm+1,..-.,Hk 
are false (m 1,2,..., k). 

THEOREM 4.1. The critical constants cl < c2 C ... < Cm required to satisfy 

Pe, (accept H1, ...J, Hm) > 1 -a for m = 1 
...., 

k (4.1) 

are obtained by solving the equation 

P{(TI, T2, 
... 

Tm) < (Cr,..., Cr, Cr+1,..., Cm)} = 1 -a for m = r + 1,..., k, (4.2) 

r 

where Cr, = t() and the notation (T1, T2, ... Tm) 
_ (Cl, C2,.... Cm) means that the 

smallest of the Ti is < cl, the next smallest is < C2, and so on. 

Proof. Available from the authors. l 

Equation (4.2) can be solved recursively starting with m - r +1l, then m r r+2 and so 
on. Note that cl ty), the upper a critical point of Student's t with v d.f., for all values 
of r. For r k, we have cm t@a for m 1, 2,..., k, which are the critical constants 
used by the step-down procedure, and for r = I, the Cm are determined recursively from 
the equation 

P{(T, 
T2.....Tm) 

?(C1,C2,...,Cm)} = 1-a for m= 1,2,...,k, 

which are the critical constants used by the step-up procedure. 
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We now give an expression for the probability in (4.2) that can be evaluated efficiently 
on a computer. Let Zi for i = 0, 1,...,k be independent N(0, 1) r.v.'s, and let U 
be a VX/v r.v. independent of the Zi. Then under 0 Ok 0= we can express 
Ti = (1 - pZ - /JZo)/U (1 < i < m) and write the desired probability as 

P 

(Z_,...P.,Zm) 
< 

(d,,....dr,dr,,id 
.dm)}(Zo)fv(U) dzo du, (4.3) 

J0 J_-oo V 
r 

where 
(-.) 

is the standard normal density function, fv(-) is the density function of U, and 

di = (ciu + 
V/zo)/I/ - p. The probability 

P{(Zi 
.... 

Zm) < (dr ...., dr, dr+,1,...,dm)} 
r 

can be evaluated recursively using Lemma 3.1 of Dunnett and Tamhane (1992a), and 
then a two-dimensional numerical integration can be employed to evaluate (4.3). 

The values of Cm for k = 1(1)6, r = 1(1)k, ct = 0.05, p = 0, 0.25, 0.50 and v = 10, 
oo are given in Table 1 for the one-sided tests discussed here. More extensive tables and 
Fortran programs for computing the Cm are available from the authors upon request. 

To emphasize the dependence of Cm on r, from now on we will use the notation cm(r), 
which are the critical constants used by SUDP(r). It follows that 

cm(m) = cm(m + 1) = = cm(k) tp. (4.4) 

The following two relations are also found to hold empirically for all the computations 
that we have done: 

cl(r) 
< C2(r) <.. 

< Ck(r) (4.5) 

and 

Cm(1) > cm(2) > ... > cm(m). (4.6) 

5. POWER OF SUDP(r) 

We consider two definitions of power: 

ni = P{reject all false Hi's and accept all true H9i's} 

and 

t2 
= P{reject all false -(i's}. 

Clearly, Il < it2. Note that ntl gives the probability of correct inferences, while it2 
is a more commonly used definition of power. The former definition turns out to be 
analytically more tractable. 

Let 6i = Oi/ot for 1 < i < k, and let im = 
Om/oJ denote the vector of the 6i's 

whose first m components are 0 and last k - m components are positive; i.e., the first m 
hypotheses are true and the remaining k - m are false. The powers n1 and in2 of SUDP(r) 
depend on the Oi's only through the bi's, and will be denoted by 

atl(5mlr) 
and xt2(5mlr), 

respectively. 
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TABLE 1: Critical constants for SUDP(r) for one-sided tests (a = 0.05). 

p d.f. r cl c2 c3 c4 c5 C6 

0.00 10 1 1.812 2.220 2.442 2.600 2.722 2.821 
2 1.812 2.211 2.442 2.600 2.722 2.821 
3 1.812 2.211 2.439 2.600 2.722 2.821 
4 1.812 2.211 2.439 2.598 2.722 2.821 
5 1.812 2.211 2.439 2.598 2.720 2.821 
6 1.812 2.211 2.439 2.598 2.720 2.820 

00 1 1.645 1.960 2.123 2.235 2.319 2.386 
2 1.645 1.954 2.123 2.235 2.319 2.386 
3 1.645 1.954 2.121 2.235 2.319 2.386 
4 1.645 1.954 2.121 2.234 2.319 2.386 
5 1.645 1.954 2.121 2.234 2.319 2.386 
6 1.645 1.954 2.121 2.234 2.319 2.386 

0.25 10 1 1.812 2.205 2.410 2.554 2.665 2.755 
2 1.812 2.189 2.408 2.553 2.664 2.755 
3 1.812 2.189 2.402 2.553 2.664 2.754 
4 1.812 2.189 2.402 2.549 2.664 2.754 
5 1.812 2.189 2.402 2.549 2.662 2.754 
6 1.812 2.189 2.402 2.549 2.662 2.753 

So 1 1.645 1.953 2.108 2.214 2.295 2.359 
2 1.645 1.942 2.107 2.214 2.295 2.359 
3 1.645 1.942 2.103 2.214 2.295 2.359 
4 1.645 1.942 2.103 2.212 2.295 2.359 
5 1.645 1.942 2.103 2.212 2.293 2.359 
6 1.645 1.942 2.103 2.212 2.293 2.358 

0.50 10 1 1.812 2.174 2.350 2.473 2.567 2.643 
2 1.812 2.151 2.347 2.472 2.566 2.642 
3 1.812 2.151 2.337 2.471 2.566 2.642 
4 1.812 2.151 2.337 2.466 2.565 2.642 
5 1.812 2.151 2.337 2.466 2.562 2.642 
6 1.812 2.151 2.337 2.466 2.562 2.640 

00oo 1 1.645 1.933 2.071 2.165 2.237 2.294 
2 1.645 1.916 2.068 2.164 2.236 2.294 
3 1.645 1.916 2.062 2.164 2.236 2.294 
4 1.645 1.916 2.062 2.160 2.236 2.294 
5 1.645 1.916 2.062 2.160 2.234 2.294 
6 1.645 1.916 2.062 2.160 2.234 2.292 

THEOREM 5.1. If the Ti's are independent (i.e., if p = 0 and v = oo) and if (4.5) and 
(4.6) hold, then for m = 0, 1,..., k - 1, 

3tl(m(1) 
< - - - < 

t1(8mlm) < nit(8m m + 1) > nit(8mlm + 2) > 
" 

. 
>> lt(8m k). (5.1) 

Proof. Available from the authors. O 

This result shows that when the Ti are independent, if m hypotheses are true and 

q - k - m are false, then r = m + 1 = k - q + yields the most powerful SUDP(r). For 
the case of dependent Ti's we were able to establish only the following partial result, 
although numerical evaluations of 

nt 
(see Table 2) suggest that Theorem 5.1 holds in 

this case, too. 
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TABLE 2: Power, l(Smlr), of SUDP(r) for k = 5, v = oo, = 0.05 and 6 = 3. 

p r =(6mlr) 

p r m=O 1 2 3 4 

0.00 1 0.6319a 0.4979 0.5044 0.5748 0.7145 
2 0.6080 0.5011a 0.5044 0.5748 0.7145 
3 0.6053 0.4943 0.5054a 0.5748 0.7145 
4 0.6051 0.4938 0.5031 0.5752a 0.7145 
5 0.6051 0.4938 0.5030 0.5746 0.7145a 

0.25 1 0.6824a 0.5456 0.5429 0.5951 0.7140 
2 0.6608 0.5506a 0.5434 0.5951 0.7140 
3 0.6578 0.5444 0.5452a 0.5953 0.7140 
4 0.6575 0.5438 0.5429 0.5961a 0.7141 
5 0.6575 0.5438 0.5428 0.5954 0.7145a 

0.50 1 0.7364a 0.6072 0.5999 0.6357 0.7279 
2 0.7182 0.6143a 0,6012 0.6360 0.7282 
3 0.7153 0.6089 0.6037a 0.6361 0.7282 
4 0.7149 0.6083 0.6017 0.6376a 0.7282 
5 0.7149 0.6083 0.6016 0.6369 0.7288a 

a Highest power among all SUDP(r) for the given configuration 5m. 

THEOREM 5.2. If (4.5) and (4.6) hold, then for m = 0, 1, - - - , k - 1 

ti(m, m) < itl(6lm + 1) > nl(mm(m + 2) > .. > ii(6m k). (5.2) 

Proof. Available from the authors. Ol 

For m = 0, (5.2) yields 

•i (So11) > •i (o012) > -. > m>(8o0k). (5.3) 

Thus when all hypotheses are false, the step-up procedure has the highest power, while 
the step-down procedure has the lowest power, using ni as the definition of the power. 

The method of proof of Theorem 5.2 fails for showing that 

mil(5mlr) ? <tl(5mlr + 1) (5.4) 

for 1 < r < m - 1 when the Ti's are dependent. 
We now turn to the analysis of J2. First note that n2(60 Ir) -= ml(o80r). Therefore, 

analogous to (5.3) we have 

JT2(8011) > JT2(8012) > .'. > T2(801k). (5.5) 

We next derive an expression for n2 that can be used for its numerical evaluation. Write 

2( )jm Ir) - ( E m 
P{accept-H...,-j 

and reject 
f-jl...,k} j=o 

Pl + ( Pj2 if r <m, 
j=o j=r 

PjIoif 
r > m, 

j= 0 
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TABLE 3: Power, n2(8m r), of SUDP(r) for k = 5, v = oo, = 0.05 and 6 = 3. 

n2(8m r) 

p r m=0 1 2 3 4 

0.00 1 0.6319a 0.5325a 0.5356a 0.6077a 0.7534a 
2 0.6080 0.5313 0.5355 0.6077 0.7534 
3 0.6053 0.5240 0.5349 0.6077 0.7534 
4 0.6051 0.5235 0.5324 0.6075 0.7534 
5 0.6051 0.5235 0.5324 0.6068 0.7531 

0.25 1 0.6824a 0.5907 0.5866 0.6393 0.7604 
2 0.6608 0.5934a 0.5870 0.6394 0.7604 
3 0.6578 0.5870 0.5880a 0.6395 0.7604 
4 0.6575 0.5864 0.5857 0.6400a 0.7604 
5 0.6575 0.5864 0.5856 0.6393 0.7607a 

0.50 1 0.7364a 0.6565 0.6491 0.6849 0.7774 
2 0.7182 0.6631a 0.6504 0.6853 0.7777 
3 0.7153 0.6576 0.6526a 0.6853 0.7777 
4 0.7149 0.6571 0.6507 0.6867a 0.7777 
5 0.7149 0.6570 0.6505 0.6861 0.7783a 

a Highest power among all SUDP(r) for the given configuration Sm. 

where 

Pjl 

= P maxT 

Ti Cj; (Tj+I,...,Tk) 

> 

(Cj+1...,Cr-1,Cr,...Cr) 

for j < r 

k-r+1 

and 

Pj2 

-=P 

f(T1 

. 

Tj) < (Cr. 

..', 

Cr, Cr+1, 

.'cj), 

; mmin Ti > 

Cj+l 

for j 
> 

r. 

It appears difficult to establish an analytical result analogous to Theorem 5.1 for n2. 
However, the above expressions can be evaluated numerically by expressing Ti 
( /1-pZi- /pjZo)/U as in (4.3). 

We have calculated itl and 3T2 for configurations 8m where 1 = ... = 6m = 0 and 

6m+, 
= * * * = 8k = 8 > 0 for m = 0, 1 ..., k - 1. Table 2 gives values of nt and Table 3 

gives values of t2 for k = 5, p = 0, 0.25, 0.50, a - 0.05, v = oo and 6 = 3. From 
Table 2 we see that, using n~ as the definition of power, SUDP(r) with r = m + 1 is the 
most powerful procedure at all 8m for all three values of p. On the other hand, from 
Table 3 we see that, using t2 as the definition of power, SUDP(1) is the most powerful 
procedure at all 8m for p = 0, while suDP(m + 1) is the most powerful procedure at all 

8m for p = 0.25 and 0.5. For small values of p (e.g., p = 0.1) the most powerful choice 
of r is found to be between 1 and m + 1. 

When m = 0, i.e., when all hypotheses are false, the most powerful procedure (using 
either definition of power) is the step-up procedure SUDP(1), which has a moderate power 
gain over SUDP(r) with r > 1. For m > 1, however, the power gain of the most powerful 
procedure suDP(r) over suDP(1) is negligible, as can be readily seen. These findings are 
in agreement with those in Dunnett and Tamhane (1993), where the step-up [suDP(1)] 
and step-down [suDP(k)] procedures were compared. 
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6. AN EXAMPLE 

As mentioned in the introduction, in some applications a trial is regarded as a "success" 
when a specified minimum number, q, of hypotheses are rejected. For example, consider 
the application described in Dunnett and Tamhane (1992b) which involves comparisons 
of a test drug with both a placebo and k > 2 known active controls for efficacy. The 
primary purpose of the trial is to demonstrate the efficacy of the test drug with respect to 
the placebo. If the test drug is shown to be effective, then it is also of interest to compare 
its efficacy with each of the known actives. 

However, before proceeding with these comparisons, it is necessary to make prelimi- 
nary comparisons between the known actives and the placebo to establish the sensitivity 
of the trial (i.e., the ability of the trial to detect differences between the known actives 
and the placebo). If the sensitivity of the trial cannot be established, the trial may be 
judged a failure and subsequent comparisons may be abandoned. 

Label the placebo as 0, the known active controls as 1,2,..., k, and the test drug as 
k+ 1. Let t0o, LI, - -., [k, [1k+1 be the respective mean responses of the k+2 treatments. The 
trial is defined to be sensitive if it detects at least a predetermined number q (1 < q < k) 
of the known active drugs to be different from the placebo. Thus we want to test 

M : i- to = 0 forat least k-q+ 1 values of i = 1,2,..., k 

versus 
A : [ti - ?o > 0 for at least q values of i = 1,2,..., k. 

Provided that H is rejected, the test drug is next compared with the placebo to show 
that 4tk+1 - Ri > 0. If this test is satisfactory, the test drug is finally compared with each 
of the known active drugs (possibly after deleting any active drugs that failed to show an 
effect compared to the placebo in the preliminary tests) to determine which differences 
Nk+I - 

•i 
can be shown to be positive. 

Consider the problem of establishing sensitivity by testing H versus A. In Dunnett and 

Tamhane (1992b) a single-step test was proposed that rejects -[ if t(k-q+l) > Ck-q+l, where 

Ck-q+-1 -q+1,v,p. Now SUDP(r) with r = k - q+ 1 can be viewed as a stepwise extension 
of this single-step test. Instead of testing a single hypothesis H1 versus A, SUDP(r) tests 
k hypotheses Hi versus Ai given in (2.1) with Oi - ti - t0o. 

The first step of SUDP(r) 
is the single-step test stated above. If t(k-q+1) > Ck-q+l, then q hypotheses (namely, 
M'(k-q+l), 

...,o•(k)) 
are rejected and the required sensitivity of the trial is established. 

SUDP(r) does further step-down testing to determine whether any additional known actives 

can be shown to be effective compared with the placebo. On the other hand, if t(kq+1) < 
Ck-q+1, then the hypotheses 

(1),...,!-(k-q+1) 
are accepted, so that sensitivity of the 

trial is not established. However, there may be explanatory reasons for this (e.g., reduced 
sample sizes due to dropouts, noncompliance, etc.). SUDP(r) does further step-up testing 
to see whether any of the remaining hypotheses can be rejected. 

In the final stage, SUDP(r) can again be used with r based on a number q' of active 
standards that the test drug should be superior to in order to justify the introduction of 
the test drug into the market. 

7. CONCLUDING REMARKS 

The main use of SUDP(r) is in those applications where it is desired to show that at 
least q out of k null hypotheses are false in which case we choose r = k - q + 1. The 
fact that the most powerful SUDP(r) can be found if the number of true hypotheses, m, 
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is known a priori [in many cases the most powerful SUDP(r) is obtained by choosing 
r = m + 1] is mainly of theoretical interest, for two reasons. First, such knowledge 
is rarely available. Second, the choice r - 1 achieves nearly the highest power in all 
cases, and therefore the step-up procedure can always be used without significant loss of 
power. 

In some applications, estimation of the treatment contrasts by simultaneous confidence 
intervals may be of greater interest. However, in many applications (such as in providing 
justification for the use of a new treatment over existing standards) hypothesis testing is 
used; here, stepwise multiple testing methods provide distinct power advantages over the 
single-step tests arising from applying methods intended primarily for estimation. The 
problem of deriving confidence intervals from stepwise tests is largely unresolved: see 
Hayter and Hsu (1994). 

The results of this paper can be extended to two-sided tests in a straightforward 
manner. A Fortran program for computing the critical constants for two-sided tests is 
available from the authors. Unbalanced designs [involving unequal '1ar Oi and unequal 
Corr (Oi, 0j)] pose a more difficult problem, but the method of Dunnett and Tamhane 
(1991, 1995) developed for the step-down and step-up procedures can be used to 
implement suDP(r) in this case. Although the resulting procedure cannot always be 
shown to control the familywise error rate, the excess over the nominal level a is 
usually quite small. Finally, we note that the adjusted p-values [see, e.g. Dunnett and 
Tamhane (1991, 1992b) and Westfall and Young (1993)] can also be defined and cal- 
culated for SUDP(r). 
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